2464

References

- Anglézio, J. C. (1990). PhD thesis, Univ. of Paris-Sud, Orsay, France.
- B. A. Frenz & Associates Inc. (1982). SDP Structure Determination Package. College Station, Texas, USA.
- Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038.
- Guéneau, C. (1993). PhD thesis, Univ. of Paris-Sud, Orsay, France.
- Guéneau, C., Servant, C., d'Yvoire, F. & Rodier, N. (1995). Acta Cryst. C51, 177-179.
- Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- Stout, G. H. & Jensen, L. H. (1968). In X-ray Structure Determination. London: MacMillan.
- Zarechnyuk, O. S., German, N. V., Yanson, T. I., Rykhal, R. M. & Muraveva, A. A. (1981). Fazouye Ravnovesiya, met. Splavakh, pp. 69–73.

Acta Cryst. (1995). C51, 2464-2466

Rhombohedral Ce₂Ni₅Zn₂ and Hexagonal CeNi₂Zn: the First Ternary Compounds from the Ce–Ni–Zn System

Volodymyr Vasyl'ovych Pavlyuk, Igor Mychajlovych Opainych and Oksana Ivanivna Bodak

Department of Inorganic Chemistry, L'viv University, 6 Lomonosova Street, 290005 L'viv 5, Ukraine

RADOVAN ČERNÝ AND KLAUS YVON

Laboratoire de Cristallographie, Université de Genève, 24 quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland

(Received 13 February 1995; accepted 17 May 1995)

Abstract

Dicerium pentanickel dizinc, $Ce_2Ni_5Zn_2$, crystallizes as a new ordered substitution variant of the Er_2Co_7 structure type. Cerium dinickel zinc, $CeNi_2Zn$, crystallizes with the YRh₂Si structure type. Both structures contain MgZn₂- and CaCu₅-type slabs which occur in ratios of 1:2 in Ce₂Ni₅Zn₂ and 1:1 in CeNi₂Zn.

Comment

No ternary phases have been reported in R-Ni-Zn systems (where R is a rare earth element). Our investigations of the phase equilibria in the Ni-rich region of the Ce-Ni-Zn system at 470 K have revealed the following compounds: rhombohedral Ce₂Ni₅Zn₂ form-

©1995 International Union of Crystallography Printed in Great Britain – all rights reserved ing with the nominal compositions $Ce_{25}Ni_{55}Zn_{20}$ and $Ce_{22.5}Ni_{55}Zn_{22.5}$, and hexagonal $CeNi_2Zn$ forming with the nominal compositions $Ce_{25}Ni_{35}Zn_{40}$, $Ce_{25}Ni_{40}Zn_{35}$, $Ce_{25}Ni_{50}Zn_{25}$ and $Ce_{22}Ni_{50}Zn_{28}$

Ce₂Ni₅Zn₂ crystallizes as an ordered substitution variant of the Gd₂Co₇ structure type (Bertaut, Lemaire & Schweizer, 1965), also known as the Er₂Co₇ structure type (Ostertag, 1967). Ni and Zn occupy the Co positions 6(c) and 18(h), and 3(b) and 9(e), respectively, in space group $R\bar{3}m$. Another ordered substitution variant of this structure type is Y₄Rh₉Si₅ (Paccard, Paccard, Moreau & Gomez Sal, 1985), in which Rh and Si occupy the positions 9(e) and 18(h), and 3(b) and 6(c), respectively.

The distribution of Ni and Zn in the structure of Ce₂Ni₅Zn₂ could not be determined from X-ray data alone because of a lack of scattering contrast. The following two arguments support the proposed distribution. Firstly, the composition of the model is close to the nominal compositions of the alloys for which crystals of Ce₂Ni₅Zn₂ were found. A model with Y₄Rh₉Si₅-type distribution would correspond to the nominal compositions of the allovs for which crystals of CeNi₂Zn were found. Secondly, the bond distances associated with the positions 3(b) and 9(e) are longer than those associated with the 6(c) and 18(h) positions. This is in accordance with the larger atomic radius of Zn compared to that of Ni. As shown in Fig. 1, the structure contains the following coordination polyhedra: Cel [Ni₁₂Zn₆Ce₂], Ce2 [Ni₉Zn₃Ce₄], Ni1 [Ni₆ZnCe₅], Ni2 and Ni3 [Ni₆Zn₃Ce₃], Zn1 [Ni₄Zn₄Ce₄], Zn2 [Ni₆Ce₆].

Fig. 1. Structural projection of rhombohedral Ce₂Ni₅Zn₂ along [001] showing the coordination polyhedra.

CeNi₂Zn crystallizes with the YRh₂Si structure type (Paccard & Paccard, 1985), which is an ordered substitution variant of the CeNi₃ structure type (Cromer & Olsen, 1959). Its structural projection is shown in Fig. 2. The structure contains the following coordina-

wR = 0.050Extinction coefficient: S = 1.785745 (275) 277 reflections Atomic scattering factors 26 parameters from International Tables for X-ray Crystallography Weighting scheme based (1974, Vol. IV, Tables on measured e.s.d.'s 2.2B and 2.3.1) $(\Delta/\sigma)_{\rm max} = 0.002$ $\Delta \rho_{\rm max} = 4.63 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -3.43 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²) for Ce₂Ni₅Zn₂

$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$

Fig. 2. Structural projection of hexagonal CeNi₂Zn along [001] х у 0 ò Cel 6(c) showing the coordination polyhedra. 0 0 Ce2 6(c)0.5003 (3) Ni1 18(h) -*x* Ni2 6(c)0 0 Ni3 6(c)0 0

Znl

Zn2

Cel —Ni3

—Ni2

—Znl

---Nil

-Ce2

tion polyhedra: Ce1 $[Ni_9Zn_3Ce_4]$, Ce2 $[Ni_{12}Zn_6Ce_2]$, Ni $[Ni_4Zn_3Ce_5]$, Zn1 and Zn2 $[Ni_6Zn_3Ce_3]$, Zn3 $[Ni_6Ce_6]$.

The structures of $Ce_2Ni_5Zn_2$ and $CeNi_2Zn$ both contain $MgZn_2$ - and $CaCu_5$ -type slabs, which occur in a ratio of 1:2 in $Ce_2Ni_5Zn_2$ and a ratio of 1:1 in $CeNi_2Zn$.

Experimental

 $Ce_2Ni_5Zn_2$ and $CeNi_2Zn$ were prepared by arc melting and annealing at 470 K for 400 h.

annealing at 470 K for 400 h.		Cel	3.69 (4)		
Co.Ni.7n		Nil	2.47 (2)	Ni2	2.46 (2)
		-N12	2.46 (2)	-Nil	$2.46(2) \times 3$
Crystal data		—Nil	2.47(2) 2.47(3) ×4	Zilli Ni3	$2.40(2) \times 3$
Ce ₂ Ni ₅ Zn ₂	Mo $K\alpha$ radiation	—Zn2	2.54 (2)	—Cel	$2.86(3) \times 3$
$M_{\star} = 704.45$	$\lambda = 0.71073 \text{ Å}$	—Ce2	2.82 (2) × 2		
Rhombohedral R3m	Cell parameters from 12 reflections	Ce2 Ce1	3.17 (3) 3.30 (2) ×2		
a = 4.945 (2) Å	$\theta = 8 - 14^{\circ}$	Ni3			
c = 36.78(1) Å	$\mu = 43.737 \text{ mm}^{-1}$	—Nil	2.47 (2) ×3		
$V = 778.8(9) \text{ Å}^3$	T = 293 K	—Zn1	2.47 (2) ×3		
Z = 6	Flake	Ni2	$2.86(3) \times 3$		
$D_{\rm r} = 9.02 {\rm Mg}{\rm m}^{-3}$	$0.112 \times 0.080 \times 0.016$ mm	-cei	2.00(3) × 3		
	Metallic	Znl		Zn2	
	Wolumo	—Zn l	2.47 (3) ×4	—Nil	2.54 (2) ×6
Data collection		—Ni3	2.47 (2) ×2	—Ce2	2.95 (3) ×6
			$2.48(2) \times 2$ 3.08(2) × 4		
eter	$[F > 3\sigma(F)]$		5.08 (2) ×4		
ω -2 θ scans	$R_{\rm int} = 0.146$				
Absorption correction:	$\theta_{\rm max} = 29.92^{\circ}$	CeNi₂Zn <i>Crystal data</i> CeNi ₂ Zn $M_r = 322.88$ Hexagonal $P6_3/mmc$ a = 5.045 (3) Å c = 16.434 (7) Å $V = 362.2$ (4) $\overset{1}{}{}_3^3$			
analytical by integration	$h = 0 \rightarrow 6$				
from crystal shape $T_{\min} = 0.040, T_{\max} =$	$k = 0 \rightarrow 6$ $l = 0 \rightarrow 51$			Mo $K\alpha$ radiation $\lambda = 0.71073$ Å Cell parameters from 12 reflections $\theta = 7-12.5^{\circ}$ $\mu = 43.233 \text{ mm}^{-1}$ T = 293 K	
2615 measured reflections	frequency: 60 min				
336 independent reflections	intensity decay: 0.6 and 0.7%				
Refinement		v = 302.2 (4) A 7 = 6		Flake	
Refinement on F R = 0.055	Extinction correction: Zachariasen (1968)	$D_x = 8.881 \text{ Mg m}^{-3}$		$0.100 \times 0.064 \times 0.010$ mm Metallic	

U_{eq} 0.0108 (4)

0.0119 (4)

0.0106 (6)

0.0112 (7)

0.0134 (7)

0.0145 (7)

0.0152 (9)

2.82 (2) ×6

2.95 (3) × 3

3.17 (3) ×3

3.22 (2) × 3

3.55 (4)

0.05011 (3)

0.14652 (3)

0.10972 (3)

0.27812 (6)

0.38828 (7)

0 1/2

Table 2. Interatomic distances up to 4 Å in Ce₂Ni₅Zn₂

Ce2

-Nil

-Zn2

—Nil

-Ce2

—Cel

0

0

1/2

2.86 (3) ×3

2.86 (3) ×3

3.08 (2) ×6

3.30 (2) ×6

3.55 (4)

0

9(e)

3(b)

2466

Data collection	
Philips PW1100 diffractom- eter	176 observed reflections $[F > 3\sigma(F)]$
ω –2 θ scans	$R_{\rm int} = 0.137$
Absorption correction:	$\theta_{\rm max} = 29.94^{\circ}$
analytical by integration	$h = 0 \rightarrow 6$
from crystal shape	$k = 0 \rightarrow 6$
$T_{\min} = 0.095, T_{\max} =$	$l = 0 \rightarrow 23$
0.646	2 standard reflections
968 measured reflections	frequency: 60 min
243 independent reflections	intensity decay: 0.8 at 1.87%
Refinement	
Refinement on F R = 0.066	Extinction correction: Zachariasen (1968)
-	

wR = 0.034Extinction coefficient: S = 2.512500.00 170 reflections Atomic scattering factors 18 parameters from International Tables for X-ray Crystallography Weighting scheme based (1974, Vol. IV, Tables on measured e.s.d.'s $(\Delta/\sigma)_{\rm max} = 0.0007$ 2.2B and 2.3.1) $\Delta \rho_{\rm max} = 3.28 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -4.06 \ {\rm e} \ {\rm \AA}^{-3}$

Table 3. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²) for CeNi₂Zn

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j$$

		x	у	Z	U_{eq}
Cel	4(f)	1/3	2/3	0.53984 (7)	0.0132 (4)
Ce2	2(<i>d</i>)	1/3	2/3	3/4	0.0215 (7)
Ni	12(k)	0.1674 (3)	2x	0.12571 (7)	0.0093 (6)
Znl	2(<i>c</i>)	1/3	2/3	1/4	0.020(1)
Zn2	2(b)	0	0	1/4	0.016(1)
Zn3	2(<i>a</i>)	0	0	0	0.012 (1)

Table 4. Interatomic distances up to 4 Å in CeNi₂Zn

Cel		Ce2	
Ni	2.890 (4) ×6	—Znl	2.912(1) × 3
—Zn3	2.985 (1) × 3	—Zn2	$2.912(1) \times 3$
—Ni	$3.083(2) \times 3$	—Ni	3.246 (4) × 12
—Cel	$3.193(1) \times 3$	—Cel	$3.454(2) \times 2$
—Cel	3.454 (2)		
Ni		Znl	
—Znl	2.505 (2)	Ni	2.505 (2) × 6
—Zn2	2.512 (2)	—Ce2	2.912(1) × 2
—Ni	$2.512(3) \times 2$	—Zn2	$2.912(1) \times 3$
—Zn3	2.531 (2)	—Ce2	2.9132 (9)
—Ni	2.533 (4) ×2		
—Cel	$2.890(4) \times 2$		
—Cel	3.083 (2)		
—Ce2	3.246 (4) × 2		
Zn2		Zn3	
—Ni	2.512 (2) ×6	—Ni	2.531 (2) ×6
—Zn1	2.912 (1) × 3	Cel	2.985(1) × 6
—Ce2	2.912 (1) ×3		

The Xtal3.2 package (Hall, Flack & Stewart, 1992) was used for cell refinement and data reduction. Structure solution was by *MULTAN87* (Debaerdemaeker, Germain, Main, Tate & Woolfson, 1987). Xtal3.2 was used for least-squares refinement based on |F| values, varying a scale factor, isotropic extinction, atomic positional and anisotropic displacement parameters.

and

The absorption correction was performed using *LSABS* (Blanc, Schwarzenbach & Flack, 1991). The atomic coordinates were standardized by *STRUCTURE TIDY* (Gelato & Parthé, 1987)

Lists of structure factors, anisotropic displacement parameters and complete geometry have been deposited with the IUCr (Reference: DU1126). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Bertaut, E. F., Lemaire, R. & Schweizer, J. (1965). C. R. Acad. Sci. 260, 3595–3597.
- Blanc, E., Schwarzenbach, D. & Flack, H. D. (1991). J. Appl. Cryst. 24, 1035-1041.
- Cromer, D. T. & Olsen, C. E. (1959). Acta Cryst. 12, 689-694.
- Debaerdemaeker, T., Germain, G., Main, P., Tate, C. & Woolfson, M. M. (1987). MULTAN87. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- Gelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139-143.
- Hall, S. R., Flack, H. D. & Stewart, J. M. (1992). Editors. Xtal3.2 Reference Manual. Univs. of Western Australia, Australia, Geneva, Switzerland, and Maryland, USA.
- Ostertag, W. (1967). J. Less-Common Met. 13, 385-390.
- Paccard, L. & Paccard, D. (1985). J. Less-Common Met. 109, 229-232.
- Paccard, L., Paccard, D., Moreau, J. M. & Gomez Sal, J. C. (1985). J. Less-Common Met. 107, 291–294.

Acta Cryst. (1995). C51, 2466-2469

An Acid Terbium(III) Cerium(IV) Sulfate Hydrate, H₉Tb₇Ce₆(SO₄)₂₇.72.2H₂O

JOHN C. BARNES

Department of Chemistry, University of Dundee, Dundee DD1 4HN, Scotland

(Received 12 May 1995; accepted 7 July 1995)

Abstract

Hexagonal crystals of $H_9Ln_7Ce_6(SO_4)_{27}.72H_2O$ are known for Ln = La–Tb. The Tb compound is isomorphous with the Nd compound described previously. Tb—O (2.55 Å average) is unusually long compared with a typical literature value of 2.43 Å and, in spite of the lanthanide contraction, is longer than the corresponding Nd—O distance although the Ce—O distances are identical. Since the quality of the crystals and hence the data is not as good for the Tb compound, and since this phase has not been reported for Ln = Dy–Lu, it may be that the size of the Ln^{III} site is fixed by the Ce^{IV}–SO₄²⁻ network.

> Acta Crystallographica Section C ISSN 0108-2701 ©1995

Zachariasen, W. H. (1968). Acta Cryst. A24, 212-216.